
Absorption durch Zentren zurückzuführen sein, die 

aus zwei und mehr Anionfehlstellen bestehen. 

6. Durch Tempern stark verfärbter NaCl/Ag-Kri-

stalle wird die Kolloidbande des Ag im NaCl bei 

4325 Ä erzeugt. Die Lage dieser Bande läßt sich 

nach der MiEschen Theorie in guter Übereinstim-

mung mit der gemessenen Lage berechnen. Diese 

Kolloide sind äußerst stabil. Sie verschwinden beim 

Tempern erst, wenn der Kristall schmilzt. 

7. Lumineszenz und Radiophotolumineszenz von 

NaCl/Ag werden durch Elektronenbestrahlung zer-

stört. 

Herrn Prof. Dr. W. HANLE danke ich herzlich für die 
Anregung zu dieser Arbeit, die großzügige Förderung 
und sein stetes Interesse. Herrn Priv.-Doz. Dr. A. 
SCHMILLEN bin ich für wertvolle Diskussionen, Fräulein 
Dipl.-Phys. L. BLENK für ihre Unterstützung bei den 
spektralphotometrischen Messungen sowie der D e u t -
schen F o r s c h u n g s g e m e i n s c h a f t für die Über-
lassung von Apparaten und der Vereinigung Deutscher 
Elektrizitätswerke VDEW, Landesgruppe Hessen, für 
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HaefTner-Effekt in Zinn, Cadium und Zink 

V o n ALEX LODDING 

Aus dem Institut für Physik, Chalmers Technische Hochschule, Göteborg 

(Z. Naturforsdig. 12 a, 569—573 [1957] ; eingegangen am 2. Apr i l 1957) 

Gleichstrom wurde durch Kapi l laren mit geschmolzenen Metal len geleitet. Dabei reicherten sich 

die leichten Isotope an der Anode an. Es ergab sich, daß der Masseneffekt /u bei Z inn mit der 

Temperatur steigt. Bei Cadm ium konnte zwischen 370 °C und 540 °C keine solche Temperatur-

abhängigkeit entdeckt werden. 

Der Isotopieeffekt bei Stromdurchgang in ge-

schmolzenen Metallen ist bisher in Quecksilber1 '2, 

Gallium 3' 4, Kalium 5, Indium 6 und Lithium 7 unter-

sucht worden. Um eine befriedigende theoretische 

Deutung geben zu können, sind weitere experimen-

telle Ergebnisse erforderlich. In der vorliegenden 

Arbeit wird der Effekt in Zinn bei 285 °C und 

590 °C, in Cadmium bei 370 °C und 540 °C und 

in Zink bei 510 °C untersucht. 

1. Appa ra t u r 

Mit einer Ausnahme war die Apparatur (Abb. 1) 
bei sämtlichen Versuchen aus Pyrex-Glas hergestellt. 
Sie bestand aus zwei ca. 20 cm langen waagerechten 
Kapillaren (Q) ~ 0,55 mm), die in der Mitte durch 
3in weites, mit einer Sauganordnung versehenes Rohr 
verbunden waren, und an deren Enden sich einge-
schmolzene Wolframelektroden befanden. Das Metall 
»vurde im weiten Rohr unter Vakuum geschmolzen und 
lann durch Wiederherstellen des Atmosphärendruckes 
(Schutzgas: N2) in die Kapillaren gedrückt. Die Ap-
jaratur befand sich in einem Temperaturbad (Nitrat-
nischung, mittels Tauchkörper erwärmt). Der Elek-

1 E. HAEFFNER, Nature, Lond . 172, 775 [1953]. 
2 E . HAEFFNER, TH . SJÖBORG U. S . L INDHE , Z . N a t u r f o r s c h g . 

I I a , 71 [1956]. 
3 G. NIEF U. E. ROTH, C. R . Acad. Sei., Paris 239,162 [1954]. 
4 M . GOLDMAN, G . N I E F U. E . ROTH , C . R . A c a d . S e i . , P a r i s 

243, 1414 [1956]. 

trodendraht war 0,5 mm dick, reichte 2 — 3 cm in die 
Kapillaren hinein und war mit einem 1 mm dicken 
Austrittdraht aus Kupfer verschweißt. Die Anschlüsse 
waren ganz in Glas gekapselt. In das weite Rohr der 
Apparatur wurde ein 1 mm Wolframdraht eingeschmol-
zen, der in die Metallschmelze tauchte und im Notfall 
als Elektrode dienen konnte, falls es Stromunterbre-
chung in einem der Schenkel geben sollte (diese An-
ordnung wurde bei dem Zn-Versuch virksam). 

Die einzige Apparatur, die sich von der obigen un-
terschied, war die für Zinn bei 590 °C verwendete. Sie 
war aus Quarz und hatte nur einen, senkrechten Schen-
kel von 25 cm Länge und ca. 0,5 mm Innendurchmes-
ser. Der Kathodenstrahl war 0,35 mm dick und reichte 
4 cm in die Kapillare hinein. Er war vakuumdicht in 
Pyrex eingeschmolzen, das mit acht Zwischengläsern 
an Quarz angeschmolzen war. Deshalb konnte ein gro-
ßes Endvolumen hier nicht vermieden werden. Die Ap-
paratur saß in einem Temperaturbad (NaN03 — KN03) 
und wurde in einem kanthal-gewickelten Ofen aus Su-
premax erwärmt. Die Quarzapparatur wurde verwen-
det, weil Pyrex bei Temperaturen in der Nähe von 
500 °C von den Metallen, besonders von Zinn, ziem-
lich stark angegriffen wurde. 

Bei dem Versuch mit Zink entstand nach vier Tagen 
eine Gasblase im Kathodenschenkel. Deshalb wurde 
nur die halbe Apparatur nützlich. 

Tab. 1 zeigt die wichtigsten Versuchsdaten. 

5 A . LUNDEN , C . REUTERSWÄRD u . A . LODDING , Z . N a t u r f o r s c h g . 

I I a , 924 [1956]. 
6 A . LODDING , A . LUNDEN U. H . v . UBISCH , Z . N a t u r f o r s c h g . 1 1 a . 

139 [1956]. 
7 A . LUNDEN , A . LODDING U . W . FISCHER , Z . N a t u r f o r s c h g . 1 2 a . 

268 [1957]. 
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Abb. 1. Elektrolysiergefäß. L inks : Seitenansicht, rechts: Elektrodenteil . 

2. Behand lung der Proben 

Nach der Elektrolyse wurden die Kapillaren in Pro-
ben von einigen cm Länge zerteilt. Cadmium und Zink 
wurden dann durch Erhitzen unter Vakuum aus den 
Kapillarstümpfen ausgetrieben. Das Zinn wurde in 
Apparaturen aus Supremax-Glas, die den früher in 
Zusammenhang mit Indium beschriebenen6 ähnelten, 
bei ca. 600 °C durch einen Strom von trockenem HCl-
Gas in SnCl2 überführt. Die Metallmenge jeder Probe 
wurde durch Wiegen vor und nach der Behandlung 
festgestellt. 

3. Massenspektrometrie 

Die Proben wurden in einem 60 "-Massenspektro-

meter der A. B. Atomenergi analysiert. Die zu unter-

suchenden Substanzen (Zn-, Cd-Metall, SnCl2) wur-

den aus einem rostfreien Tiegelchen verdampft, der 

im Ionisierungsraum einer NiERschen Elektronen-

stoßionenquelle saß. A) Zink: Die Intensitäten der 

Massen 64 und 68 wurden hier nach der TAYLOR-

schen 8 Methode verglichen. Wegen störendem Hin-

tergrund bei der höheren Masse mußte das Massen-

spektrometer bei jeder Probe sorgfältig ausgeheizt 

werden. Höchstens eine Probe pro Tag konnte ver-

messen werden. B) Cadmium: Die Massen 106 und 

116 wurden verglichen. Um nicht die ganze Ion-

quelle mit Cadmium zu belegen, wurde mit mög-

lichst kleinen Ionenströmen gearbeitet (für Masse 

106 ca. 1 0~ n Amp. ) . C) Zinn: Die Massen 112 

und 124 wurden verglichen. Versuch I (270 °C) 

wurde ohne besondere Schwierigkeiten analysiert 

Vor der Analyse des Versuchs I I (590 °C) wurden 

die Hg-Pumpen des Massenspektrometers aus an 

deren Gründen durch Öldiffusionspumpen ersetzt 

weshalb langes Ausheizen und Pumpen für dit 

Herabsetzung des Hintergrundes der Masse 112 not 

wendig war. 

Versuch Temp. (°C) Durchschnitt-
strom (Amp) 

Stromdichte 
(Amp/cm2) 

Versuchsdauer 
(Tage) 

Transportierte 
Ladung (C) 

Z i n n I 285 ± 5 10,3 4150 17 4200 ± 50 

Z i n n I I 590 ± 20 10,0 5500 27 6400 ± 100 

C a d m i u m I 370 ± 10 10,1 4650 21 5100 ± 70 

C a d m i u m I I 540 ± 20 12,5 3950 15 4460 ± 70 

Z i n k 510 ± 10 10,5 4050 11 2760 ± 50 

Tab. 1. Versuchsdaten. 

8 C.TAYLOR, Ark . Fys. 8, 201 [1954]. 



4. Ergebnisse 

Aus Tab. 2 ist ersichtlich, daß 

alle an die Neutralproben gren-

zenden Proben innerhalb der be-

rechneten Fehler noch normale Iso-

topen-Häufigkeiten haben. Daraus 

kann man schließen, daß kein 

angereichertes Material aus den 

Kapillaren herausdiffundiert ist. 

Wir können also in der üblichen 

Weise 9 den Masseneffekt 

u= (Aw/w) / (AM/M) 

berechnen. Hier ist AW die rela-

tive Wanderungsgeschwindigkeit 

zweier Isotope mit einer Massen-

differenz von AM, und W ist die 

Geschwindigkeit der Ionen in be-

zug auf das Elektronengas unter 

der Annahme, daß die Anzahl 

freier Elektronen pro Metall-Atom 

z= 1 ist . BRESLER u n d PIKUS 1 0 

drücken den Isotopieeffekt durch 

(AW/VfJ / (AM/M) a u s , w o v E 

die „EmsTEiNsche" Geschwindig-

keit ist: 

V£ = e E 
D 

k T 

e = Elektronenladung (As), E = Feld-
stärke (V/cm), D = Selbstdiffusions-
koeff iz ient ( cm 2 /S ) , k = BOLTZMANN-

Konstante (J/°K), T = Temperatur 
(°K). 

Eine kurze Berechnung gibt 

e E D L e 2 Qy D 

x wkT ~T ' MT 
(1) 

L = LoscHMiDTsche Z a h l ( l / M o l ) , 

o = Spezif ischer W i d e r s t a n d ( i 3 c m ) , 

y = D ichte des Me t a l l s ( g / c m 3 ) , 

M = A tomgew ich t des Me t a l l s (g 

p ro M o l ) . 

In Tab. 3 sind fi und x für sämtliche Versuche 

zusammengestellt. Der Vollständigkeit halber sind 

auch die Resultate früherer Messungen des HAEFFNER-

Effekts in die Tabelle aufgenommen. Die mit einem 

Stern markierten Werte sind von ju auf x , oder um-

gekehrt, umgerechnet. Wo der Diffusionskoeffizient 

9 A . KLEMM, Z. Naturforsdig. 1 a, 252 [1946]. 
10 C. E. BRESLER u. G . E. PIKUS, Z u m . Techn. Fiz ik i X X V I , 

109 [1956]. 

Versuch P robe 
L änge 

( m m ) 

Metallge-

wich t (mg) 
Häuf igke i tsverhä l tn is 

Z i n n I 1* 50 58 124Sn/112Sn = 7,22 ± 0,0 

2 46 88,1 6,95 ± 0,10 

3 44 85,5 6,60 ± 0,15 

4 35 66,3 6,23 ± 0,15 

00 Neu t ra lp robe 6,19 ± 0,10 

5 28 52,9 6,12 ± 0,15 

6 43 79,9 5,75 ± 0,15 

7 40 72,2 5,83 ± 0,15 

8 * 51 77 5,43 ± 0,10 

Z i n n I I 1* Endbehälter 355 124Sn/112Sn = 6,98 ± 0,05 
2 * 42 12 

124Sn/112Sn = 

6,90 ± 0 , 1 5 

3 58 69,3 6,87 ± 0,05 

4 44 63,2 6,54 ± 0 , 1 5 

5 92 98,5 6,50 ± 0,05 

6 77 70,7 6,14 ± 0,05 

00 Neu t ra lp robe 6,05 ± 0,05 

C a d m i u m I 1* 56 83 116Cd/106Cd = 6,97 ± 0,05 

2 41 82,4 

116Cd/106Cd = 

6,76 4- 0,08 

3 41 81,5 6.52 ± 0,04 

4 34 62,0 6,34 ± 0,07 

5 19 32,0 6,16 ± 0,05 

00 Neu t ra lp robe 6,14 ± 0,02 

6 30 57,0 6,12 ± 0,04 

7 40 77,5 5,92 ± 0,06 

8 35 64,6 5,76 ± 0,06 

9 36 68,2 5,54 ± 0,04 

10* 32 50 5,32 ± 0,05 

C a d m i u m I I 1* 46 72 116Cd/106Cd = 6,73 ± 0,04 

2 37 90,6 

116Cd/106Cd = 

6,66 ± 0,07 

3 46 113,6 6,37 ± 0,04 

4 40 96,2 6,14 ± 0,06 

00 Neu t ra l p robe 6,14 ± 0,02 

5 29 76,2 6,14 4- 0,06 

6 37 92,5 6,00 ± 0,05 

7 41 102,7 5,76 ± 0,05 

8 * 64 115 5,43 ± 0,10 

Z i n k 00 Neu t ra lprobe 6 4Zn/ 6 8Zn = = 2,655 ±0 ,01 

1 22 37,6 2,658 ± 0,01 

2 37 63,8 2,662 ± 0,01 

3 34 58,2 2,666 ± 0,01 

4 36 61,8 2,691 ± 0,01 

5 24 42,5 2,725 ± 0,01 

6 * 15 1 2,75 ± 0 , 0 1 

Tab. 2. Probenanalyse (Probe 1, 2, . . . usw. sind von der Kathode ausgehend 

numeriert. Die Wo l f ram enthaltenden Proben sind mit einem Stern bezeichnet). 

unbekannt war, wurde in dieser Berechnung (zwei 

Sterne) angenommen, daß D = kT/67ir/rm, wo t] 

die Viskosität ist und rm der metallische Atom-

Radius nach PAULING n . (Diese Formel hat mit den 

gemessenen Werten1 2 '1 4 einigermaßen gute Uber-

einstimmung gegeben.) Die Diffusionskoeffizienten 

11 L . PAULING, The Nature of the Chemical Bond, I thaca 1939. 
12 R.E.HOFFMAN, J . Chem. Phys. 20, 1567 [1952]. 



Meta l l 
T 

° K 

e-io6 

ß c m 
y 

g/cm 3 
D • 105 

cm2/s N • 105 
10 

Z i t a t 

N r . 

S n 558 ± 5 48,9 6,92 3,5 1,13 ± 0,35 0 ,57* 
863 ± 20 56,3 6,72 12,0 2,53 ± 0,25 0 ,52* 

Cd 643 ± 10 33,7 7,97 1,35 1,20 ± 0,20 2 , 16* * 
813 ± 20 34,4 7,78 2,25 1,24 ± 0,20 1 ,68** 

Z n 783 ± 10 35,4 6,86 1,55 0,58 ± 0,15 0 , 71* * 

H g 323 ± 2 98,4 13,47 1,8 4,0 ± 0,5 0 ,96* 2 

G a 325 ± 5 29 6,0 0,85 0 , 69* * 0,96 ± 0,10 4 
338 ± 5 (30) 6,0 0,90 0 , 95* * 1,24 ± 0,15 
488 ± 5 (37) 5,9 1,70 2 , 35* * 1,94 ± 0,20 
499 ± 5 (38) 5,9 1,75 2 , 51* * 2,01 ± 0,25 
560 ± 5 (40) 5,9 2,45 4 , 26* * 2,59 ± 0,30 

I n 483 ± 5 31,4 7,0 2,35 1,0 ± 0.3 0 ,96* 6 
803 ± 10 (44) 6,8 6,40 2,5 ± 0,4 1,17* 

1093 ± 20 (55) (6,6) 9,55 6,0 ± 1,5 1,92* 

K 431 ± 5 19,3 0,80 3,9 0,9 ± 0,15 2 , 27** 5 

L i 561 ± 5 33,0 0,50 5,75 3,4 ± 0,5 1 ,26** 7 

Tab. 3. Die gemessenen Isotopieeffekte. 

(Ein Stern: aus Formel (1) ausgerechnet. Zwei Sterne: D nicht gemessen. I n K l ammern : wil lkürl ich 

angenommene Werte.) 

f ü r H g , I n u n d S n s i n d b z w . v o n HOFFMAN 1 2 , LOD-

DING 1 3 u n d CARERI u n d PAOLETTI 1 4 g emessen . D i e 

Werte von Q, y und r; wurden dem L iqu id Metals 

Handbook l o entnommen. 

5. D i skuss i on 

Aus Tab. 3 geht hervor, daß sowohl ju wie auch x 

für sämtliche Metalle von der gleichen Größenord-

nung sind, JLI wächst mit der Temperatur bei I nd i um , 

Gal l ium und Z inn , bleibt aber bei Cadmium zwi-

schen 370 C und 540 °C innerhalb unserer Fehler-

grenzen unverändert. Bei I nd ium und Gal l ium zeigt 

auch x eine deutliche Steigerung mit der Temperatur. 

Für Cadmium und Z inn bleibt x einigermaßen kon-

stant oder sinkt möglicherweise langsam ab. 

B i s h e r ist de r HAEFFNER-Effekt v o n KLEMM 1 6 , 

DE GENNES 1 7 u n d BRESLER u n d PIKUS 1 0 t heore t i sch 

d i s k u t i e r t w o r d e n . BRESLER u n d PIKUS sch l agen v o r , 

daß der Isotopieeffekt auf dem Unterschied der 

EiNSTEiNschen Re ibung k T\D beruhen könnte, weil 

das schwere Ion kleiner sei als das leichte und des-

halb unter dem Einf luß der elektrischen Kraft leich-

ter durch die Schmelze dringe. Diese Darstellung 

13 A . LODDING, Z. Naturforschg. I I A , 200 [1956]. 
14 G . CARERI U. A . PAOLETTI, Nuovo Cim. X 2 , 574 [1955]. 

stimmt nicht mi t dem Befund, daß die leichten Iso-

tope schneller diffundieren, überein und ist deshalb 

nicht stichhaltig. 

DE GENNES behandelt die Wechselwirkung der 

Elektronen mi t EINSTEIN-Atomen, die in einem Käf ig 

von Nachbaratomen schwingen. Zu diesem Bild wer-

den zwei Approximat ionen eingeführt: 1. Das Stö-

rungspotential ist der Abweichung des Ions von der 

Mittellage im Käf ig proport ional ; 2. Man führt eine 

wohldefinierte mittlere Wegstrecke für die Elektro-

nen ein. Die Behandlung führt zu 

wo 0 = charakteristische Temperatur für die Schmelze 

= hco/k, co = mittlere Schwingungs-Frequenz, z = 

Zahl der Ladungen pro Ion . Es erscheint schwer, 

dieses Ergebnis mit den Daten, besonders jenen für 

Ga l l ium und I nd i um , zu vereinigen. Qualitativ fin-

det DE GENNES, daß das leichte Isotop wegen der 

größeren Ampl i tude der thermischen Schwingungen 

die Elektronenbewegung mehr stört und deshalb 

vorzugsweise von den Elektronen mitgerückt wird. 

Nach KLEMM gibt es in geschmolzenen Metallen 

mehr oder weniger bewegliche Ionen. Einfachheits-

15 L iqu id Metals Handbook , Navexos P. 733 (Rev.) Jan . 

1954, S. 4 0 - 4 3 . 
16 A . KLEMM, Z . Naturforsdig. 9 a, 1031 [1954], 
17 P . G . DE GENNES, J . Phys. R a d i um 17, 343 [1956]. 



halber wird das Metall als eine Mischung von be-

weglichen (Index b) und unbeweglichen (Index u) 

Ionen und Elektronen (Index n) betrachtet. 

Für fJt erhält KLEMM 18 den Ausdruck 

cb Fb B\, a. ( 3 ) 

Dabei ist cb = c b / ( c b + c u) die Relativkonzentration 

und Z?b die auf die Kraft-Einheit bezogene Beweg-

lichkeit der beweglichen Ionen. F b ist die auf das 

bewegliche Ion einwirkende elektrische und Elek-

tronenreibungs-Kraft. a ist ein Ausdruck für den 

Isotopie-Effekt: 

ABh\ /Ai 

By, 

Ach AF i, 

cb F b 
(4) 

KLEMM n immt an, daß a in geschmolzenen Me-

tallen von derselben Größenordnung ist wie in ge-

schmolzenen Salzen, nämlich AW - 0,1. Nach HERZOG 

und KLEMM 19 wird — a bei geschmolzenem T1C1 für 

die Cl-Isotope wahrscheinlich mit zunehmender Tem-

peratur kleiner. 

Für x folgt nun aus (1) und ( 3 ) : 

ci, F\, Bh „ 
e E D/k T 

( 5 ) 

Um diesen Ausdruck zu diskutieren, setzen wir nä-

herungsweise P b = D\,jk T und erhalten, da defini-

tionsgemäß D — ch Dh + cu Dn und Z)u = 0 : 

Fb x = —— a . 
e E 

(6) 

Da — a jedenfalls nicht mit der Temperatur wächst, 

wahrscheinlich aber mit der Temperatur kleiner 

wird, folgt aus der experimentellen Temperatur-

abhängigkeit von (Tab. 3 ) , daß — F b/e E bei ge-

schmolzenen Metallen, insbesondere bei I nd i um und 

Gal l ium, mit der Temperatur wächst. 

F b setzt sich wie erwähnt aus der elektrischen 

Kraft z e E und der dem Betrag nach größeren Elek-

tronenreibungskraft F b n zusammen. Da man letztere 

proportional zur Zahl 2 der freien Elektronen pro 

Ion ansetzen wird, kann man schreiben 

-Fh/eE = z(<pbü-l), (7) 

wobei 9?bn = — F b n /z e E die reduzierte Re ibung zwi-

schen einem beweglichen Ion und einem freien Elek-

tron darstellt. Es ist nicht ohne weiteres anzuneh-

men, daß sich 2 mit der Temperatur wesentlich än-

dert. Der Anstieg von — Fi, mit der Temperatur 

rührt wahrscheinlich daher, daß die Wärmebewe-

gung der beweglichen Ionen und damit 9ohn mit der 

Temperatur größer wird. 

Weitere Messungen des HAEFFNER-Effekts und der 

Selbstdiffusion dürften für das Verstehen von Trans-

portvorgängen in flüssigen Metallen nützlich sein. 

Die Arbeit wurde vom S c h w e d i s c h e n A t o m -

k o m i t e e unterstützt. Ich möchte Herrn Prof. N. RYDE 

für sein freundliches Interesse und Herrn Dr. H.v. UBISCH 

und der Leitung der A. B. A t o m e n e r g i für die 

Ermöglichung der Massenanalysen herzlich danken. 
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H e r r I n g . S.-E. SÄLG u n d H e r r I n g . R . EKHOLM haben 

einige Massenanalysen selbst durchgeführt und mir bei 
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bin ich für die chemische Behandlung der Proben dank-

bar. 

18 A . KLEMM, Internat ional Symposium on Isotope Separa-

tion, Amsterdam 1957. 

19 W . HERZOG U. A . KLEMM, Z. Naturforschg., im Druck. 


